header
Simulation Model:Cloud System

Tag:
Edit edit   Starstar

Program Information

Name: Simulation Model:Cloud System
Domain: Algorithm
Functionality: Integrates a complete simulation platform for modelling cloud computing systems, with testing methods for checking the correctness of modelled cloud systems.
Input: $m$ represents the original model provided by the user, $m'$ represents a variant automatically generated by the testing engine;And $M$ be a set of cloud models.
Output: $T$ represents the workload executed in each model

Reference

A methodology for validating cloud models using metamorphic testing https://doi.org/10.1007/s12243-014-0442-7 

MR Information

MR1------Performance

Description: The CPU system performance of $m$ denoted by $\Delta(m_{cpu})$.And the time required to execute $T$ over $m$ is denoted by $time(T(m))$.  
Property: $m'\in M \wedge \Delta(m_{cpu}) > \Delta(m'_{cpu}) \Rightarrow time(T(m')) \geq time(T(m))$
Source input: $m$
Source output: $T(m)$
Follow-up input: $m'$
Follow-up output: $T(m')$
Input relation: $m'\in M \wedge \Delta(m_{cpu}) > \Delta(m'_{cpu})$
Output relation: $time(T(m')) \geq time(T(m))$
Pattern:

MR2------Functional

Description: Let $m_P$ and $m'_P$ be two sets of physical machines that represent the physical machines used to model $m$ and $m'$, respectively.And $|m_P|$ denotes the number of physical machines;$\uparrow T(m)$ denotes $T(m)$ is executed successfully. 
Property: $m'\in M \wedge |m_P| > |m'_P| \Rightarrow \uparrow T(m') \rightarrow \uparrow T(m)$
Source input: $m$
Source output: $T(m)$
Follow-up input: $m'$
Follow-up output: $T(m')$
Input relation: $m'\in M \wedge |m_P| > |m'_P|$
Output relation: $\uparrow T(m') \rightarrow \uparrow T(m)$
Pattern:

MR3------Energy aware

Description: The energy required to execute $T(m)$,denoted by $\Omega(T(m))$.
Property: $m'\in M \wedge \frac{\Omega(T(m))}{\Omega(T(m'))} > 1 \Rightarrow time(T(m')) > time(T(m))$
Source input: $m$
Source output: $T(m)$
Follow-up input: $m'$
Follow-up output: $T(m')$
Input relation: $m'\in M \wedge \frac{\Omega(T(m))}{\Omega(T(m'))} > 1$
Output relation: $time(T(m')) > time(T(m))$
Pattern:
Insert title here