header

Electronic payment : To validate the MT framework for testing Web services, and report the effectiveness of MT.
Tag:
Edit edit   Starstar

Program Information

Name: Electronic payment
Domain: Algorithm
Functionality: To validate the MT framework for testing Web services, and report the effectiveness of MT.
Input:
     A:The sender account numbers for the transfer transaction(Type:A long integer consists of 10 digits) B:The recipient account numbers for the transfer transaction(Type:A long integer consists of 10 digits) P:The transfer type(Type:Integer) M:The amount of a transfer transaction(Type:An integer ranging from 0 to 50000)
Output:
     $\triangle A$:The difference between the balances of account A before transaction and after transaction. $\triangle B$:The difference between the balances of account B after transaction and before transaction.

Reference

     Metamorphic Testing for Web Services: Framework and a Case Study http://dx.doi.org/10.1109/ICWS.2011.65

MR Information


MR1


    Source input: $A_s,B_s,P_s,M_s$ ; Source output: $\triangle A_s,\triangle B_s$
    Follow-up input: $A_f,B_f,P_f,M_f$ ; Follow-up output: $\triangle A_f,\triangle B_f$
    Input relation: $A_f=A_s$ $B_f=B_s$ $P_f=P_s$ $M_f=2M_s$
    Output relation: $\triangle A_f \le 2\triangle A_s$ $\triangle B_f=2\triangle B_s$

MR2


    Source input: $A_s,B_s,P_s,M_s$ ; Source output: $\triangle A_s,\triangle B_s$
    Follow-up input: $A_f,B_f,P_f,M_f$ ; Follow-up output: $\triangle A_f,\triangle B_f$
    Input relation: $A_f=A_s$ $B_f=B_s$ $P_s=1$ and $P_f=2$ $M_f=M_s$
    Output relation: $\triangle A_f - \triangle B_f=\triangle A_s - \triangle B_s$

MR3


    Source input: $A_s,B_s,P_s,M_s$ ; Source output: $\triangle A_s,\triangle B_s$
    Follow-up input: $A_f,B_f,P_f,M_f$ ; Follow-up output: $\triangle A_f,\triangle B_f$
    Input relation: $A_f=A_s$ $B_f=B_s$ $P_s=0$ and $P_f \ne 0$ $M_f=M_s$
    Output relation: $\triangle A_f - \triangle B_f>\triangle A_s - \triangle B_s$

MR4


    Source input: $A_s,B_s,P_s,M_s$ ; Source output: $\triangle A_s,\triangle B_s$
    Follow-up input: $A_f,B_f,P_f,M_f$ ; Follow-up output: $\triangle A_f,\triangle B_f$
    Input relation: $A_f=A_s$ $B_f=B_s$ $P_s=3$ and $P_f \ne 3$ $M_f=M_s$
    Output relation: $\triangle A_f - \triangle B_f \le \triangle A_s - \triangle B_s$

MR5


    Source input: $A_s,B_s,P_s,M_s$ ; Source output: $\triangle A_s,\triangle B_s$
    Follow-up input: $A_f,B_f,P_f,M_f$ ; Follow-up output: $\triangle A_f,\triangle B_f$
    Input relation: $A_f=A_s$ $B_f=B_s$ $P_s=P_f$ $M_f>M_s$
    Output relation: $\triangle A_f >\triangle A_s$ $\triangle B_f>\triangle B_s$

MR6


    Source input: $A_s,B_s,P_s,M_s$ ; Source output: $\triangle A_s,\triangle B_s$
    Follow-up input: $A_f,B_f,P_f,M_f$ ; Follow-up output: $\triangle A_f,\triangle B_f$
    Input relation: $A_f=B_s$ $B_f=A_s$ $P_s=P_f$ $M_f>M_s$
    Output relation: $\triangle A_f =\triangle B_s$

Related

Insert title here