header

Program Information

Name: TriSquare.
Domain: Geometry
Functionality: Check whether 3 positive real numbers could construct a triangle
Input: X: The length of first edge (Type: Real) Y: The length of second edge (Type: Real) Z: The length of third edge (Type: Real)
Output: K: The area of corresponding triangle if there be, 0 otherwise (Type: Real)

Reference



         An Effective Iterative Metamorphic Testing Algorithm Based on Program Path Analysis http://dx.doi.org/10.1109/QSIC.2007.4385510     An Efficient Metamorphic Testing Technique Using Genetic Algorithm http://dx.doi.org/10.1007/978-3-642-19423-8_19     An optimized method for generating cases of metamorphic testing http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6528673     Security Assurance with Program Path Analysis and Metamorphic Testing http://dx.doi.org/10.1109/ICSESS.2013.6615286     Research on Metamorphic Testing: A Case Study in Integer Bugs Detection http://dx.doi.org/10.1109/ISDEA.2013.516 




MR Information

MR1------

Description:
Property:
Source input: <Xs, Ys, Zs>
Source output: Ks
Follow-up input: <Xf, Yf, Zf>
Follow-up output: Kf
Input relation: let {Xf, Yf, Xf
Output relation: Kf = Ks.
Pattern:

MR2------

Description:
Property:
Source input: <Xs, Ys, Zs>
Source output: Ks
Follow-up input: <Xf, Yf, Zf>
Follow-up output: Kf
Input relation: let Xf = 2 * Xs, Yf = 2 * Ys, Zf = 2 * Zs
Output relation: Kf = 4Ks.
Pattern:

MR3------

Description:
Property:
Source input: <Xs, Ys, Zs>
Source output: Ks
Follow-up input: <Xf, Yf, Zf>
Follow-up output: Kf
Input relation: qrt{2*Ys^{2
Output relation: Kf = Ks.
Pattern:
Insert title here